[ ] dt [pk ] n! , ] [ / [ / pk] {\displaystyle {\mathcal {W}}\{f(t)\}\;=\;W(\omega ,\tau )\;=\;\int _{-\infty }^{\infty }f\left(\tau +{\frac {t}{2}}\right)\cdot f^{*}\left(\tau -{\frac {t}{2}}\right)\cdot e^{-i\omega t}\;dt\qquad (1a)} [ ] dt [pk ] n! , ] [ / [ / pk] {\displaystyle f(t)\;=\;{\mathcal {W}}^{-1}\{W(\omega ,\tau )\}\;=\;{\frac {1}{2\pi \cdot f^{*}(0)}}\int _{-\infty }^{\infty }W\left(\omega ,{\frac {\tau }{2}}\right)\cdot e^{i\omega \tau }\;d\omega \qquad (1b)} [ 1 ] [ 2 ] [ ] dt [pk ] n! , ] [ / [ / pk]
Comentários
Postar um comentário