Gerar link Facebook X Pinterest E-mail Outros aplicativos janeiro 29, 2023 [ ] dt [pk] n!, ] [ / [ / pk] {\displaystyle {\mathcal {W}}\{f(t)\}\;=\;W(\omega ,\tau )\;=\;\int _{-\infty }^{\infty }f\left(\tau +{\frac {t}{2}}\right)\cdot f^{*}\left(\tau -{\frac {t}{2}}\right)\cdot e^{-i\omega t}\;dt\qquad (1a)} [ ] dt [pk] n!, ] [ / [ / pk] {\displaystyle f(t)\;=\;{\mathcal {W}}^{-1}\{W(\omega ,\tau )\}\;=\;{\frac {1}{2\pi \cdot f^{*}(0)}}\int _{-\infty }^{\infty }W\left(\omega ,{\frac {\tau }{2}}\right)\cdot e^{i\omega \tau }\;d\omega \qquad (1b)}[1][2] [ ] dt [pk] n!, ] [ / [ / pk] Gerar link Facebook X Pinterest E-mail Outros aplicativos Comentários
Comentários
Postar um comentário