Gerar link Facebook X Pinterest E-mail Outros aplicativos janeiro 29, 2023 [ ] dt [pk] n!, ] [ / [ / pk] [ ] dt [pk] n!, ] [ / [ / pk] e, {\displaystyle b_{n}={\frac {1}{L}}\int _{c}^{c+2L}f(t)\,\operatorname {sen} \left({\frac {n\pi t}{L}}\right)\,dt} [ ] dt [pk] n!, ] [ / [ / pk] {\displaystyle a_{0}={\frac {1}{L}}\int _{c}^{c+2L}f(t)\,dt}, [ ] dt [pk] n!, ] [ / [ / pk] , {\displaystyle a_{n}={\frac {1}{L}}\int _{c}^{c+2L}f(t)\cos \left({\frac {n\pi t}{L}}\right)\,dt} [ ] dt [pk] n!, ] [ / [ / pk] Gerar link Facebook X Pinterest E-mail Outros aplicativos Comentários
Comentários
Postar um comentário